Package: ICBioMark 0.1.5

ICBioMark: Data-Driven Design of Targeted Gene Panels for Estimating Immunotherapy Biomarkers

Implementation of the methodology proposed in 'Data-driven design of targeted gene panels for estimating immunotherapy biomarkers', Bradley and Cannings (2021) <arxiv:2102.04296>. This package allows the user to fit generative models of mutation from an annotated mutation dataset, and then further to produce tunable linear estimators of exome-wide biomarkers. It also contains functions to simulate mutation annotated format (MAF) data, as well as to analyse the output and performance of models.

Authors:Jacob R. Bradley [aut, cre], Timothy I. Cannings [aut]

ICBioMark_0.1.5.tar.gz
ICBioMark_0.1.5.zip(r-4.5)ICBioMark_0.1.5.zip(r-4.4)ICBioMark_0.1.5.zip(r-4.3)
ICBioMark_0.1.5.tgz(r-4.4-any)ICBioMark_0.1.5.tgz(r-4.3-any)
ICBioMark_0.1.5.tar.gz(r-4.5-noble)ICBioMark_0.1.5.tar.gz(r-4.4-noble)
ICBioMark_0.1.5.tgz(r-4.4-emscripten)ICBioMark_0.1.5.tgz(r-4.3-emscripten)
ICBioMark.pdf |ICBioMark.html
ICBioMark/json (API)
NEWS

# Install 'ICBioMark' in R:
install.packages('ICBioMark', repos = c('https://cobrbra.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cobrbra/icbiomark/issues

Datasets:

On CRAN:

2.70 score 2 scripts 217 downloads 22 exports 46 dependencies

Last updated 2 years agofrom:e5040a9892. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winNOTENov 16 2024
R-4.5-linuxNOTENov 16 2024
R-4.4-winNOTENov 16 2024
R-4.4-macNOTENov 16 2024
R-4.3-winNOTENov 16 2024
R-4.3-macNOTENov 16 2024

Exports:fit_gen_modelfit_gen_model_uninteractfit_gen_model_unisampgenerate_maf_dataget_auprcget_biomarker_from_mafget_biomarker_tablesget_gen_estimatesget_Kget_mutation_dictionaryget_mutation_tablesget_pget_panels_from_fitget_predictionsget_r_squaredget_statsget_table_from_mafpred_first_fitpred_intervalspred_refit_panelpred_refit_rangevis_model_fit

Dependencies:clicodetoolscolorspacedplyrfansifarverforeachgenericsgglassoggplot2glmnetgluegtableisobanditeratorslabelinglatex2explatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellnlmepillarpkgconfigPRROCpurrrR6RColorBrewerRcppRcppEigenrlangscalesshapestringistringrsurvivaltibbletidyselectutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Gene Lengths from the Ensembl Databaseensembl_gene_lengths
First-Fit Predictive Model Fitting on Example Dataexample_first_pred_tmb
Generative Model from Simulated Dataexample_gen_model
Simulated MAF Dataexample_maf_data
Example Predictionsexample_predictions
Refitted Predictive Model Fitted on Example Dataexample_refit_panel
Refitted Predictive Models Fitted on Example Dataexample_refit_range
Mutation Matrices from Simulated Dataexample_tables
Tumour Indel Burden of Example Train, Validation and Test Data.example_tib_tables
Tumour Mutation Burden of Example Train, Validation and Test Data.example_tmb_tables
Fit Generative Modelfit_gen_model
Fit Generative Model Without Gene/Variant Type-Specific Interactionsfit_gen_model_uninteract
Fit Generative Model Without Sample-Specific Effectsfit_gen_model_unisamp
Generate mutation data.generate_maf_data
AUPRC Metrics for Predictionsget_auprc
Produce a Table of Biomarker Values from a MAFget_biomarker_from_maf
Get True Biomarker Values on Training, Validation and Test Setsget_biomarker_tables
Investigate Generative Model Comparisonsget_gen_estimates
Construct Bias Penalisationget_K
Group and Filter Mutation Typesget_mutation_dictionary
Produce Training, Validation and Test Matricesget_mutation_tables
Construct Optimisation Parameters.get_p
Extract Panel Details from Group Lasso Fitget_panels_from_fit
Produce Predictions on an Unseen Datasetget_predictions
R Squared Metrics for Predictionsget_r_squared
Metrics for Predictive Performanceget_stats
Produce a Mutation Matrix from a MAFget_table_from_maf
ICBioMark: A package for cost-effective design of gene panels to predict exome-wide biomarkers.ICBioMark
Non-Small Cell Lung Cancer MAF Datansclc_maf
Non-Small Cell Lung Cancer Survival and Clinical Datansclc_survival
First-Fit Predicitve Model with Group Lassopred_first_fit
Produce Error Bounds for Predictionspred_intervals
Refitted Predictive Model for a Given Panelpred_refit_panel
Get Refitted Predictive Models for a First-Fit Range of Panelspred_refit_range
Visualise Generative Model Fitvis_model_fit